Simple batch processing of GC-MS and LC-MS/MS **CSOS** results for LIMS upload from MassHunter software laboratory systems integration

Kevin Jones & Claire Parker CSols Ltd, The Heath, Runcorn, Cheshire WA7 4QX, UK

Tel: +44 (0)1928 513535 Web: www.csols.com email: kevin.jones@csols.com & claire.parker@csols.com

Figure 2:

Reviewing

results in Links for LIMS

Background

MassHunter is a very powerful software application designed for the control, data capture, data processing and reporting from all of the Agilent GC-MS and LC-MS/MS Mass Spectrometer product ranges. With many test methods generating large numbers of results, (e.g. pesticides in drinking water or drugs of abuse in urine) or where MassHunter post run modules create additional derived data, it is essential that the appropriate capabilities are in place to deal with this data effectively.

MassHunter already provides a comprehensive on board reporting capability and related utilities. However it does not always offer the necessary data translation, conversion and alignment facilities required in different laboratories to easily pass suitable data backwards and forwards to systems such as Laboratory Information Management Systems (i.e. LIMS, LIS), Manufacturing systems (e.g. SCADA, ERP, MRPII) or other databases. Moreover while MassHunter also offers a wide range of result validation facilities offering colour coded flags indicating possible instrument errors, it does not offer direct access to historical Analytical Quality Control AQC data to meet the regulatory drive (i.e. ISO17025, ISO15189) to become more responsive to limit or trend AQC exceptions.

1	Sample Name	Anthracene	Fluoranthene	Benzo(h)fluoranthene	Benzo(k)fluoranthene	Benzo(a)ovrene	Indeno(1.2.3.cd)ovrene	Benzo(a h i)nervlene	PAH (total by calculation)
1	Neat	0.01129	0.01043	0.01178	0.01099	0.01106	0.01090	0:01006	0.000
2	Ona/I std	0.000617	0.000789	0.000166	0.000057	0.000058	0.000166	0.000262	0.0000
3	1ng/l std	0.001602	0.001751	0.001137	0.001029	0.001020	0.001124	0.001285	0.0000
4	5na/l std	0.005408	0.005486	0.004995	0.004850	0.004937	0.005239	0.004904	0.0000
5	10ng/l std	0.010486	0.010476	0.010777	0.009984	0.010097	0.010023	0.009752	0.0000
6	17.5ng/l std	0.018615	0.017887	0.018361	0.017962	0.018015	0.017502	0.017396	0.0000
7	25ng/l std	0.027734	0.026517	0.027544	0.027992	0.028258	0.027185	0.028059	0.0000
8	Neat Blank	< 0.00059	<0.00043	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
9	AQC YOWOH Extra	0.009446	0.009746	0.009127	0.009036	0.009030	0.009120	0.009183	0.0364
10	547169	<0.00059	>0.02500	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
11	AQC YOWOH	0.009590	0.009567	0.009321	0.008914	0.009234	0.009758	0.009282	0.0372
12	543310	<0.00059	0.00360	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
13	543338	<0.00059	0.00067	<0.00092	<0.00063	<0.00056	< 0.00039	<0.00038	0.000
14	543381	<0.00059	0.00086	< 0.00092	<0.00063	<0.00056	< 0.00039	0.00042	0.000
15	543495	0.00150	0.00550	0.00230	0.00081	0.00120	0.00740	0.00210	0.012
16	543502	0.00140	0.00350	0.00120	< 0.00063	0.00062	0.01200	0.00170	0.014
17	543564	0.00210	0.01500	<0.00092	< 0.00063	< 0.00056	<0.00039	<0.00038	0.000
18	551271	0.00060	0.00150	< 0.00092	<0.00063	<0.00056	< 0.00039	0.00042	0.000
19	543623	0.00170	0.01400	0.01500	0.00530	0.01100	0.01000	0.01000	0.040
20	543802	<0.00059	0.01500	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
21	543915	0.00450	0.02000	0.00110	<0.00063	<0.00056	<0.00039	<0.00038	0.001
22	543923	0.00110	0.01300	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
23	543987	< 0.00059	0.00095	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
24	544105	<0.00059	0.00780	<0.00092	< 0.00063	<0.00056	<0.00039	<0.00038	0.000
25	544233	0.00097	0.00980	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
26	544234	0.00210	0.00560	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
27	544502	<0.00059	0.00280	<0.00092	<0.00063	<0.00056	<0.00039	<0.00038	0.000
28	AQC YOWOH	0.008221	0.009517	0.009492	0.008650	0.009217	0.009314	0.009018	0.0364
29	553651	<0.00059	0.00077	<0.00092	<0.00063	<0.00056	<0.00039	0.00039	0.000
30	553652	<0.00059	0.00078	< 0.00092	<0.00063	<0.00056	<0.00039	0.00039	0.000
31	553653	0.00064	0.00072	<0.00092	<0.00063	<0.00056	<0.00039	0.00047	0.000
32	553654	0.00063	0.00073	<0.00092	<0.00063	<0.00056	< 0.00039	0.00043	0.000
33	553655	0.00060	0.00078	<0.00092	<0.00063	<0.00056	<0.00039	0.00042	0.000
34	AQC YOWOH	0.009477	0.009143	0.009253	0.006748	0.009149	0.009626	0.009270	0.0368
35	553656	<0.00059	0.00073	<0.00092	<0.00063	<0.00056	<0.00039	0.00041	0.000
36	553657	0.00059	0.00089	<0.00092	<0.00063	<0.00056	<0.00039	0.000 <mark>4</mark> 0	0.000
37	553658	<0.00059	0.00100	<0.00092	<0.00063	< 0.00056	<0.00039	<0.00038	0.000
38	553659	<0.00059	0.00064	<0.00092	<0.00063	<0.00056	< 0.00039	< 0.00038	0.000
39	553983	<0.00059	0.00069	<0.00092	< 0.00063	<0.00056	<0.00039	<0.00038	0.000

Simple batch processing

This poster explains how CSols Links and LIMS software can fully complement the capabilities of MassHunter for all GC-MS & LC-MS/MS analysis, can provide both a flexible modular solution for seamless integration with other IT systems, and offer immediate access to relevant AQC data.

Instrument setup and loading

Whether your laboratory operates with worklists (lists of samples requiring a specific test method) or in an ad-hoc way with samples as they arrive on the bench, setting up a batch run electronically can save precious time and remove errors. If a LIMS or LIS system is used it's possible to extract and read a LIMS generated worklist or to ask electronically for all outstanding samples. For ad-hoc testing, barcode reading can verify that the sample is already registered and has the correct tests assigned. Links for LIMS can easily translate many different LIMS worklist formats and merge control samples into a predefined layout (see Figure 1) ready for

Extracting Results

Extracting or reporting results from MassHunter can be streamlined using MassHunter scripts. These can be launched directly from the MassHunter Offline Data analysis module menu, saving time and eliminating any unnecessary dialog. Links for LIMS can be launched directly from the script on the instrument workstation or can be run at a separate PC workstation in the laboratory.

📅 Agilent MassHunter Quantitative Analysis - Csols immuno Demo data - Batch-for-Csols.batch.bin																				
8	File Edit View Analyze Method Update Report Tools Help																			
	🗄 🛅 🕞 🕞 💭 Analyze Batch 👻 🕜 🕴 Lay 🗾 Actions 🔶 🕨							Gene	Generate Report											
Ba	Batch Table 🔯 Audit Trail					Send	Send to LIMS (Links for LIMS by CSols)													
1	Sample: 👔 Blank1 👻 🎚					Options	Custom Action				🔹 🖃 ISTD: Ascomycin									
	Sample					Number Formats			TAC Results		SIR Results		EVE Results		CycloA Results					
	•	7	Name	Data File	Туре		Add-Ins	Dil.	RT	Final Conc.	Accuracy	RT	Final Conc	Accuracy	RT	Final Conc.	Accuracy	RT	Final Conc.	Accuracy
		٣	Blank001	Blank - 1-r001.d	Sample		23/04/2010 18:41	1.0	1.318	181.0032		1.753	19.419	6	1.413	50.1541		1.561	897.4928	
		٣	Blank1	Blank - 1-r001.d	Sample		23/04/2010 18:41	1.0	1.318	181.0032		1.753	19.419	5	1.413	50.1541		1.561	897.4928	
		٣	Blank1	Blank - 1-r002.d	Sample		23/04/2010 18:44	1.0	0.799	98.3359		1.404	4.913	3	1.282	4.9757		1.589	830.6565	
		٣	Blank1	Blank - 1-r003.d	Sample		23/04/2010 18:47	1.0	0.801	28.5078		1.841	22.7092	2	1.418	37.1599		1.739	1.0638	
	•	٣	Blank1	Blank - 1-r004.d	Sample		23/04/2010 18:50	1.0	0.818	66.9247		1.574	17.2583	3	1.390	35.5841				
		٣	Blank1	Blank - 1-r005.d	Sample		23/04/2010 18:53	1.0	0.959	50.6966		1.754	7.119	7	1.187	7.9409		1.944	18951.3506	
		٣	Extracted1	Cal - 1-r001.d	Blank		23/04/2010 18:56	1.0	1.600	0.0000		1.856	0.062	D	1.479	0.0139		1.553	3.4270	
		٣	Extracted1	Cal - 1-r002.d	Blank		23/04/2010 19:00	1.0	1.464	0.0000		1.505	0.128	4	1.611	0.0000		1.543	3.1553	
		٣	Extracted1	Cal - 1-r003.d	Blank		23/04/2010 19:03	1.0	0.773	0.0000		1.442	0.302	6	1.183	0.0000		1.539	3.2142	
		٣	Extracted7	Cal - 7-r001.d	Cal	6	23/04/2010 20:18	1.0	1.338	0.5785	94.8	1.392	0.663	7 96.2	1.406	0.5169	86.2	1.543	12.5487	103.3

Figure 4:

AqcTools

software

charting PAH AQC

results.

Figure 3: Script used to extract and launch Links for LIMS.

direct instrument set up.

4 Setup Run - YOWOH_208 on HPMSD													
File Edit Output Configuration Help													
쁜	2.2												
		Sample Name	Anthracene	Fluoranthene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene						
	1	Neat											
	2	Ong/I std											
	3	1ng/l std											
	4	5ng/l std											
	5	10ng/l std											
	6	17.5ng/l std											
	7	25ng/l std											
	8	Neat Blank											
	9	543310											
	10	543338											
	11	543381											
	12	543495											
	13	543502											
	14	543564											
	15	551271											
	16	543623											
	17	543802											
	18	543915											
	19	543923											
	20	543987											
	21	544105											
	22	544233											
	23	544234											
	24	544502											
	25	AQC YOWOH											
	26	553651											

Figure 1: Links for LIMS instrument setup

Results Reporting

Rather than introduce further electronic transcription, through for example Excel, we believe that analysts would rather deal with the results as soon as possible. Links for LIMS then has everything that is needed. From flagging, formatting, handling weights and dilution factors, as well as calculations through to holding of all the necessary data required to upload to LIMS directly. Here's an example (Figure 2) above of instrument results being reviewed. Links for LIMS calculations can be configured to automatically handle duplicate runs. Double clicking an AQC allows historical AQCs to be viewed directly including all limit and trend exceptions. See Figure 4.

Summary

Links for LIMS can fully complement MassHunter extending its utility as well as meeting the requirements for improved AQC responsiveness. Eliminating data transcription from instrument setup and results transfer saves between 3% & 5% errors compared to manual processes, and can save many man hours of effort per run in the immediate post processing of results to allow analysts to react immediately to AQC exceptions.

Further Information

CSols Ltd. The Heath, Runcorn, Cheshire, WA7 4QX, UK Tel: +44 (0)1928 513535 Fax: +44 (0)7006 061106

Web: <u>www.csols.com</u> Email: <u>links4lims@csols.com</u>